The image of the large, six-axis articulated robot welding car and truck bodies became fixed in the popular imagination in the 1970s and 1980s. Since then, articulated robots have spread throughout and beyond heavy industry with many improvements to the robot itself, as well as the development of more end effectors (end of arm tooling) to address the wider need for flexible automation.
Articulated robots are used in sectors as diverse as healthcare, food and beverage, steelmaking, and warehousing—wherever there are repetitive or environmentally or ergonomically challenging tasks that can be accomplished faster, more reliably, and/or more cost-effectively.
Robot basics
Initially, this robot revolution provided major manufacturers like automakers with even greater economies of scale but offered nothing to most small- and medium-sized businesses. More recent developments in cartesian robotics (linear), SCARA and delta robots—along with collaborative robots—have made automation accessible to businesses of almost any size.
Each type of robot comes with benefits and limitations. For new adopters of robotics, it’s important to understand those possibilities and pitfalls.
Robots come with 1-7 axes, each axis providing a degree of freedom. A two-axis cartesian gantry typically plots on the X-Y or Y-Z axes. A three-axis robot has three degrees of freedom and performs its functions through the X-Y-Z axes. These small robots are rigid in form, and cannot tilt or rotate themselves, although they can have attached tooling that can swivel or rotate or adapt to the shape of a small payload. Four- and five-axis robots have additional flexibility to rotate and tilt. A six-axis articulated robot has six degrees of freedom—the flexibility to move objects in any directions or rotate them in any orientation. The latter type is generally chosen when an application requires complex manipulation of objects. The seventh axis allows extended reach in one axis; in other words, it allows displacement of the six-axis articulated robots.
Articulated robots
The popularity of six- and seven-axis articulated robots reflects the great flexibility that six degrees of freedom permit. They are easy to program, come with their own controller and movement sequences, and I/O activation can be programmed via a user-friendly teach pendant. On the hardware side, industrial articulated robots can be relatively small or massive. They can have substantial reach, over three meters with certain models.
The articulated robot also has issues which can restrict its utility or boost its cost profile. A small-sized articulated robot is easy to install; its base only need be bolted to a frame or floor. But it can only lift so much or reach so far.
Where the job requires a larger robot, civil engineering may be required to ensure the structure can handle the weight and torque caused by the load offset. The longer the reach, the greater the payload it can manage, the more space and engineering it requires, the more it costs.
An articulated robot also has singularities, i.e., locations and orientations in the surrounding space it cannot access. These spatial limitations require more complex safety precautions since the robot will often be used in zones where workers are present, even just occasionally. Expensive devices, such as zone scanners or safety mats are often necessary, and more advanced functionalities are then required, such as Safely Limited Speed (SLS), or Safe Speed Monitor (SSM). The fact it requires its own controller to handle the inverse kinematics can also represent a double dip from a hardware perspective since, in certain cases, the robot controller will need to communicate with a higher-level PLC on the production line.