New Uses for Old Batteries

Sept. 1, 2011
ABB and GM test Chevrolet electric vehicle batteries for storage and back-up power uses as well as selling power back to the grid. 
When considering the product lifecycle of the battery systems used in hybrid and all-electric cars, the big question is: What will happen to the battery systems after they reach the end of their useful life in the vehicle? 
Finding practical answers to this questions is no small matter, especially when you consider that the battery system in the Chevy Volt, for example, will still have 70% of its useful life untapped when its automotive use is exhausted.


Some research conducted by General Motors predicts that secondary use of just 33 Volt batteries would have enough storage capacity to power up to 50 homes for approximately four hours during a power outage.

>> For more about the development of lithium batteries and the Chevy Volt, check out the new book, Bottled Lightning.

To conduct more research in this area, GM and ABB Group have signed an agreement to identify joint research and development projects around the reuse of Chevy Volt battery systems. Since the initiation of the GM and ABB agreement, the companies have demonstrated an energy storage system that combines electric vehicle battery technology and a proven grid-tied electric power converter. ABB and GM are building a prototype that could lead to Volt battery packs storing energy, including renewable wind and solar energy, and feeding it back to the grid. The system could store electricity from the grid during times of low usage to be used during periods of peak demand, saving customers and utilities money. The battery packs could also be used as back-up power sources during outages and brownouts. 


Using Volt battery cells for grid energy storage applications, the ABB and GM team is also building a prototype system for 25-kilowatt/50-kWh applications, about the same power consumption of five U.S. homes or small retail and industrial facilities. For this project, ABB has determined its existing power quality filter (PQF) inverter can be used to charge and discharge the Volt battery pack to take advantage of the system and enable utilities to reduce the cost of peak load conditions. The system can also reduce utilities’ needs for power control, protection and additional monitoring equipment. The team will soon test the system for back-up power applications. 



About the Author

David Greenfield, editor in chief | Editor in Chief

David Greenfield joined Automation World in June 2011. Bringing a wealth of industry knowledge and media experience to his position, David’s contributions can be found in AW’s print and online editions and custom projects. Earlier in his career, David was Editorial Director of Design News at UBM Electronics, and prior to joining UBM, he was Editorial Director of Control Engineering at Reed Business Information, where he also worked on Manufacturing Business Technology as Publisher. 

Sponsored Recommendations

Why Go Beyond Traditional HMI/SCADA

Traditional HMI/SCADAs are being reinvented with today's growing dependence on mobile technology. Discover how AVEVA is implementing this software into your everyday devices to...

4 Reasons to move to a subscription model for your HMI/SCADA

Software-as-a-service (SaaS) gives you the technical and financial ability to respond to the changing market and provides efficient control across your entire enterprise—not just...

Is your HMI stuck in the stone age?

What happens when you adopt modern HMI solutions? Learn more about the future of operations control with these six modern HMI must-haves to help you turbocharge operator efficiency...

AVEVA™ System Platform: Smarter, Faster Operations for Enhanced Industrial Performance

AVEVA System Platform (formerly Wonderware) delivers a responsive, modern operations visualization framework designed to enhance performance across all devices with context-aware...