Watch this video on Endress+Hauser's Proline 10 transmitter for Coriolis and electromagnetic flowmeters. | According to Andreas Meyer, business development manager for liquid analysis at Endress+Hauser, when using conventional field instruments for measurement and analysis, parameters such as level, flow, pressure, and temperature are recorded individually and fed into regression models that make determinations about a sample’s quality. However, this must be done using many different sensors and requires new models to be programmed for each specific application. By contrast, Raman spectroscopy can measure multiple variables at once with high accuracy, allowing results to be delivered in real-time for continuous, on-the-fly optimization. Because of this, it can help process manufacturers improve product quality, speed cycle times, increase yields, and comply with regulatory standards more effectively, Meyer said.
For industrial applications, the issue with Raman spectroscopy is that is largely limited to laboratory use and has yet to be applied to in-line applications. When set up for use in a lab rather than integrated directly into a process control system, there are several disadvantages. For one, samples taken from a plant floor can change while being drawn or during transport. Moreover, because of the delay in obtaining a test result, operators cannot engage in timely corrective measures while the process is still running. This means that if an issue is detected, an entire batch of product may have to be thrown out.