Siemens Partners with Arm on Automotive Electronics Design

Jan. 23, 2020
In its Pave360 digital twin technology, Siemens is using Arm’s intellectual property to help automakers and suppliers simulate and verify designs before the vehicle is built.

The automotive industry has been at the forefront of new automation technology adoption for decades. Beyond its broad adoption of industrial robots in the 1980s and its more recent integration of collaborative robots and additive manufacturing, the industry has also been applying various software technologies to optimize assembly operations, improve automotive design, and promote collaboration in the manufacturing process.

Now the industry is turning toward the use of digital twin technology to simulate and verify sub-assembly designs before manufacturing. This is a critical advantage in a number of applications, ranging from reducing the weight of autonomous vehicles to the design of safety systems.

A good example of this can be seen in Siemens Digital Industries (formerly Siemens PLM) partnership with Arm, the well-known supplier of semiconductor products and device architectures. The two companies are initially focusing on the automotive industry to help automakers, integrators, and suppliers collaborate, design, and deliver their next-generation platforms. More specifically, the companies are focusing on developing platforms for active-safety, in-vehicle infotainment, digital cockpits, and self-driving vehicles.

Siemens’ Pave360, introduced in May 2019 as part of the company’s Xcelerator portfolio, is a digital twin software environment that can be used to model devices in an automobile ranging from sensors and integrated circuits (ICs) to vehicle dynamics and the environment within which a vehicle operates. The software uses Arm Automotive Enhanced products with functional safety support, enabling collaboration in the development and validation of differentiated safety enabled systems, ICs, and software applications in the context of the entire vehicle. This capability will help automakers and suppliers simulate and verify sub-system and system-on-chip designs to better understand how they perform within a vehicle design before the vehicle is built. 

About the Author

David Greenfield, editor in chief | Editor in Chief

David Greenfield joined Automation World in June 2011. Bringing a wealth of industry knowledge and media experience to his position, David’s contributions can be found in AW’s print and online editions and custom projects. Earlier in his career, David was Editorial Director of Design News at UBM Electronics, and prior to joining UBM, he was Editorial Director of Control Engineering at Reed Business Information, where he also worked on Manufacturing Business Technology as Publisher. 

Sponsored Recommendations

Rock Quarry Implements Ignition to Improve Visibility, Safety & Decision-Making

George Reed, with the help of Factory Technologies, was looking to further automate the processes at its quarries and make Ignition an organization-wide standard.

Water Infrastructure Company Replaces Point-To-Point VPN With MQTT

Goodnight Midstream chose Ignition because it could fulfill several requirements: data mining and business intelligence work on the system backend; powerful Linux-based edge deployments...

The Purdue Model And Ignition

In the automation world, the Purdue Model (also known as the Purdue reference model, Purdue network model, ISA 95, or the Automation Pyramid) is a well-known architectural framework...

Creating A Digital Transformation Roadmap Using A Unified Namespace

Digital Transformation has become one of the most popular buzzwords in the automation industry, often used to describe any digital improvements to industrial technology. But what...