Endurance
The industrial edge is where all the most relevant data sources are located—as well as extremes of shock, vibration, contaminants, and temperature. High heat is a particular enemy of digital devices and requires special attention.
Not only will typical consumer- or commercial-grade IT devices fail early in edge environments, but the typical IT device lifetime of three years is well below OT equipment lifespans, which can extend a decade or more. Another problem with PCs at the edge is that IT personnel are much scarcer at these locations, making support difficult.
While many vendors tout their products as IPCs, users in the field have discovered there is some variability to these claims. Some IPCs may not be tested stringently enough, and others may only meet specifications by compromising other performance aspects. And down the road, these IPCs simply may not offer the scalability and longevity needed for OT projects.
Truly industrial IPCs
To properly meet performance and reliability demands, industrial users need IPCs built by organizations intimately familiar with OT conditions. Industry experts with broad OT experience know how to design a PC for the target environment, test it rigorously, ensure a long support lifecycle, and package it with the options and scalability needed for IIoT projects.
Thermal design is a primary concern. Careful design will consider primary components like CPUs (central processing units) and secondary components like SSDs (solid-state drives), and will ensure that heat sinks and thermal conductive paths are optimized to avoid hot spots. In some cases, patented IPC thermal designs and strict testing protocols can result in operating temperatures about 10°C lower than traditional IPCs would experience in a similar environment, delivering life expectancy improvements.
End users appreciate IPCs with a reasonable set of configuration options—just enough to meet their needs while simplifying ordering and stocking. Similarly, modular designs enabled by a COM Express architecture are popular because they make future upgrades easier.
Users should also look for IPCs designed to meet their thermal ratings at 100% CPU performance, following a zero-throttle principal, in zero airflow conditions. Some IPCs may only be able to meet specifications by throttling their CPUs or by assuming cabinet airflow, both of which may be unacceptable in real-world conditions.