Temperature measuring system lengthens the service lives of plants and improves product quality

Feb. 2, 2017
Innovative Sitrans TO500 multipoint temperature measuring system Precise determination of the temperature profile to optimize processes Up to 48 measuring points to up to 192 measuring points Better exploitation of the reactor space through the smaller protective tube Especially suitable for applications in the chemical industry

In the Sitrans TO500, Siemens is putting an innovative measuring system for fiber-optic temperature measurement onto the market. It enables complex temperature measurements and detection of the precise position of critical over temperatures, for example in tube and tube-bundle reactors. The Sitrans TO500 is characterized by a large number of measuring points (up to 48 per measuring lance, depending on the temperature range) and the small diameter of the sensor measuring lance. This allows users to use a smaller protective tube in the reactor. This makes measurements more accurate, and so improves productivity and product quality. The precise determination of the temperature profile enables users to detect critical operating states in a timely manner and initiate countermeasures. This lengthens the service lives of plants.

The measuring system is especially suitable for use in the chemical industry. The reliable determination of the temperature profile within the catalyst filling is of crucial importance in the catalytic conversion of gases and liquids in tube and tube-bundle reactors. It significantly affects the course of the reaction, the quality of the substance conversion and the aging process of the catalyst. The object is to detect areas with excessive temperatures (hotspots) at an early stage, and make adjustments if necessary, for example to optimize the reaction processes.

This is where the Sitrans TO500 comes in. For the first time it uses a fiber Bragg grating (FBG) for the measurements. The Sitrans TO500 can evaluate 48 FBGs in each of four channels (a total of 192 measuring points), thus enabling precise determination of temperature changes in the smallest spaces. Additionally, it is the first device to enable FBG-based measurements in industrial environments (i.e. under harsh plant conditions and at high temperatures). This new form of temperature measurement has already been proven in the chemical industry.

>>For more information, click here

Sponsored Recommendations

Food Production: How SEW-EURODRIVE Drives Excellence

Optimize food production with SEW-EURODRIVE’s hygienic, energy-efficient automation and drive solutions for precision, reliability, and sustainability.

Rock Quarry Implements Ignition to Improve Visibility, Safety & Decision-Making

George Reed, with the help of Factory Technologies, was looking to further automate the processes at its quarries and make Ignition an organization-wide standard.

Water Infrastructure Company Replaces Point-To-Point VPN With MQTT

Goodnight Midstream chose Ignition because it could fulfill several requirements: data mining and business intelligence work on the system backend; powerful Linux-based edge deployments...

The Purdue Model And Ignition

In the automation world, the Purdue Model (also known as the Purdue reference model, Purdue network model, ISA 95, or the Automation Pyramid) is a well-known architectural framework...