Controllers at Con Edison’s East River generating station.
Source: Emerson |
As for installing patches, OT systems present special challenges because they cannot be shut down suddenly without negatively impacting the processes they’re running. “There are a handful of critical devices that probably can't be patched without some downtime,” says Jaime Foose, head of the lifecycle support and security solutions organization for Emerson Automation Solutions’ power and water business.
The solution to patching these critical systems is to plan carefully. “You look to do that in an outage window,” Foose says. “You take a short outage, do it in the middle of the night, or a time where it's least disruptive to the process.” With proper preparation, she says, systems can be patched and rebooted in a controlled manner that doesn’t interfere unduly with the processes they control.
In addition to patching, basic security steps normally undertaken in the business IT world can also help secure industrial systems. Implementing user account controls, installing malware protection—including antivirus software and whitelisting-approved access points to prevent unauthorized access—are all among the measures Emerson recommends. “Those very basic things that are common on our home computers and on our work computers are things that in an industrial control environment are sometimes not adopted,” Foose explains.
In all, Foose breaks down best practices for OT cybersecurity into four broad categories:
- Analyze your system to map out what is on your networks and where it resides. This will help you plan defenses and plug gaps in security.
- Deploy defenses, including closing open ports and services that aren’t needed, installing patches, installing malware protection and making sure backups are in place and regularly updated in case all else fails.
- Monitor your systems for unusual activity and intrusions. Managing alarms and keeping track of them is vital for this to work.
- Incidence response is the final piece of the puzzle, ensuring that plans are in place for use when something does go wrong—which may include natural disasters and other incidents, not just cyber attacks.
Many of these ideas are relatively easy to follow, Foose says, and they are also codified in cybersecurity standards put out by authoritative sources such as the National Institute of Standards and Technology (NIST). NIST’s Cybersecurity for Internet of Things (IoT) guidance and its Guide to Industrial Control Systems (ICS) Security point the way to more secure systems, Kermani adds.
Lessons from NERC
Of special interest to critical infrastructure is NERC’s critical infrastructure protection (NERC CIP) standards.
If there’s one organization in North America that is especially well equipped to guard against outages cause by cyber attacks and everything else, it’s NERC, which has 50 years of experience keeping the North American electric grid online. NERC’s chief security officer, Marcus Sachs, is unequivocal in his insistence that critical OT systems should remain isolated. “Our standards make that real clear,” he says. “Automate all that you want, but thou shalt not let thy automation touch the Internet.” Though NERC standards don’t dictate how systems should be built, he says, “We don't want there to be a connection to the Internet. That's the standard.”
Sachs isn’t against connectivity within an OT environment, whether it’s at a plant or remotely to engineers monitoring it—just against linking it up willy nilly to the outside world. “If you cross-connect the system with the wide open, public, unregulated, wild, wild West that we call the Internet, you run into problems,” he says.
After securing access to the broader Internet, Sachs says best practices call for doing away with a monoculture of connectivity. In other words, if every plant is engineered too similarly to others, it gives hackers the means to replicate their efforts, allowing them to leverage hacks on one installation to gain access to another. “Get the systems diverse so that if there's failure, it only fails one, maybe two places, but it can't cascade,” Sachs advises. “It can't replicate. It can't go to other systems because they're different.” Fortunately, he says, the electric grid here in North America is in good shape in this regard.
Finally, Sachs says, it’s important to recognize that cyber attacks are launched by people—people using cyber tools to do their dirty work, but people nevertheless. At the same time, cybersecurity is also managed by people whose tools are important, but who must remain aware of the dangers and how to counteract them. “It's not devices fighting devices,” he emphasizes. “It's people fighting people.”
It was apparently a well-funded, well-trained group of cyber criminals who were likely to have been working for the Russian government who took down large portions of the power grid in the Ukraine in 2015 and again in 2016, according to analysis in Wired magazine. In the first attack, hackers were able to gain access to systems controlling circuit breakers because logging into them did not use two-factor authentication. This provided the security hole for the attackers to log in with hijacked credentials that did not have to be verified by other means.
Though the Ukrainian power plants were back online in a matter of hours after the first attack, and within an hour following the second, a clear shot had been fired across the bow of the world’s industries. The takeaway lesson is that cybersecurity for OT cannot be taken for granted.