The first data cables were PVC-insulated single conductors that were stranded into pairs to prevent possible faults. Later, it was ascertained that low-capacity insulation (e.g., polyethylene) has improved electrical properties, enables longer ranges, and can reduce the use of ferrites (magnets that contribute to fault-free data transmission) during cable assembly. This was common practice in analog technology; and to control each function and each device of a system, a separate pair was required.
This changed with the advent of digital technology. Impedance, cable attenuation, near-end crosstalk, and other properties were defined as cable parameters, and bus technology found its way into automation, system, and mechanical engineering. Suddenly, many devices on a network could be controlled with one cable pair, e.g., Profibus. This succeeded thanks to digital technology and addressing each individual device. The data transmission of bus cables, however, was still very slow in comparison to today‘s possibilities, and achieved a maximum of 20 Mbit.
Ethernet, a uniform data network for networks (LAN technology), was originally used exclusively for office communication. It was not until the turn of the millennium that industrial equipment, connectors, and Ethernet cables were made suitable for industrial use. The industrial Ethernet was born.
In 2015, the automotive industry started to rely more heavily on Single Pair Ethernet (SPE). The advantages are that it is space-saving, high-performance, and light. It is, therefore, ideal for the enormously increased data rates caused by cruise control, autonomous driving, or the camera system in the vehicle. In the car, an unshielded cable is usually used for 100BASE-T1, as the application lengths are < 50 ft (15 m).
In order to make the SPE suitable for industrial use, and to help shape the technological changes, we joined the SPE Industrial Network (https://single-pair-ethernet.com).